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A classification of  particles in two classes is proposed in the framework of  a 
model of space-time previously introduced. One of them is constituted by 
particles being represented by sets of  sets of preparticles. The other kind is 
constituted by particles represented by cuts or discontinuities in a space-time. 
We prove here that particles of the first and second kind follow the Bose-Einstein 
and Fermi-Dirac statistics, respectively., 

1. INTRODUCTION 

Before we give a summary of our model of space-time (in the next 
section), let us mention briefly the main trends in the development of 
foundational theories of this concept. 

A first classification could be done according to the scale of phenomena 
to which these theories refer, i.e., in macroscopic and microscopic founda- 
tional theories of space-time. A typical macroscopic one is the Basri theory 
of space-time (Basri, 1966), Examples of microscopic theories are the 
Finkelstein theory (Finkelstein, 1969, 1972a, 1972b, 1974, 1982; Finkelstein 
et al., 1974), Penrose's theory (Penrose, 1967, 1968, 1975), Borneas's theory 
(Borneas, 1976, 1980, 1981), and Sachs's theory of space-time (Sachs, 1972, 
1980, 1981). 

Another criterion of classification could be the relational character of 
these theories. We consider a foundational theory of either space or space- 
time as relational in a strong sense when some kind of material objects and 
order relations between them enter in the theory at the level of primitive 
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concepts, and when the disappearance of material objects entails the disap- 
pearance of space-time. When only this last condition is fulfilled, we consider 
the theory in question to be relational in a weak sense. Examples of relational 
macroscopic theories in a strong sense are those of Basri (1966), and Bunge 
and Garcia-M~iynez (1976). An example of a relational microscopic theory 
of space-time in a strong sense is that of Finkelstein. In the last version of 
this theory a quantum topology is elaborated in terms of some kind of 
material objects and causal relations between them (Finkelstein, 1982). The 
Penrose and Borneas theories, already mentioned, are examples of relational 
(in a weak sense) microscopic theories of space-time. 

Another classification of space-time theories could be done according 
to the discreteness or continuity of the space-time. The relevance of this 
disjunctive has been stressed recently by several authors (see, e.g., 
Feynmann, 1982; Finkelstein, 1982). 

A fourth criterion of classification could be the kind of logic underlying 
the theory under consideration. The majority of space-time theories have 
been elaborated assuming, either implicitly or explicitly, classical logic. All 
the theories mentioned above, except Finkelstein's, are classical-logic space- 
time theories. 

A last criterion could be a "filogenetic" one, in the sense of the 
universally accepted physical theories, from which the considered founda- 
tional space-time theories emerge directly, by using the main concepts and 
the mathematical apparatus of such accepted theories. Needless to say, all 
foundational space-time theories are inspired by relativity. Yet, apart from 
this indirect relationship, there are space-time theories which use the funda- 
mental concepts and the mathematical apparatus of general relativity. In 
this sense, such theories emerge directly from general relativity. Examples 
of those theories are the Basri, Borneas, and Sachs theories. The Penrose 
theory is related directly to both quantum theory and relativity; in fact, this 
theory is an attempt to conciliate them (Penrose, 1975). 

The theory treated in this paper (see Section' 2) is a microscopic, 
relational in a weak sense, discrete, and classical-logic theory of space-time. 
Furthermore, this theory is indirectly related to relativity and quantum 
theory in the sense mentioned above, although it has been elaborated trying 
to reproduce some main features of these two universally accepted theories. 

Within the framework of this theory of space-time we will analyze in 
the present paper the problem of quantum statistics. 

2. A SET-THEORETICAL THEORY OF SPACE-TIME 

Here we are concerned with a model of space-time already developed 
in previous papers (Garcfa-Sucre, 1975, 1978a, 1978b, 1979, 1981). In the 
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elaboration of  this model we have started from the two primitive concepts 
of preparticles and the membership relation of set theory. We have con- 
sidered preparticles as the most basic components of any physical system 
(Garcia-Sucre, 1975). 

Let B==-{~i/i~I}, where I is a finite set of labels, B the set whose 
members are all the preparticles in the universe, which we assume to be 
finite in number. We have given arguments in previous papers in favor o f  
representing particles as subsets of the power set P(B) of B (Garcfa-Sucre, 
1975, 1978a, 1978b, 1979). Let the set 

Pi = {a'(x)lx e X and ai(x) E P(B)} (1) 

where X is a finite set of labels, represents a particle in our model; the 
members a~(x) of Pi being ordered by the relation of proper inclusion c .  
If the set pi representing a particle can be completely ordered by the relation 
c ,  then we say that p~ represents an evolving particle. Let us point out here 
that we will use the same symbol to denote a physical entity (e.g., particles, 
fields, etc.) and the set representing it in our model. On the other hand, we 
call those particles represented by partly ordered sets nonevolving particles 
(Garcfa-Sucre, 1975). 

We call a state of  p~ any set 

s i (x )=ai (x ) - -wai (x ' ) ,  x 'EX ' ( x )  (2) 

where ai(x), ai(x')cp~, X ' (x)  being such that for every x ' ~ X ' ( x )  the 
relation ai(x) cja~(x ') holds. We denote Y.(p~) the set of all the a states of 
p~ ordered according to the following rule: given two a states s~(x), s~(y) 
~(pi),  then si(x) precedes si(y) if a i ( x )c  ai(y), where ai(x) and ai(y) 
are related, respectively, to s~(x) and si(y) through equation (2). 

Let us illustrate the above definitions in the following graphic rep- 
resentation of  particles. Imagine that a page like this one is divided in a 
very large but finite number of very small regions covering it completely. 
Assume that each small region stands for a preparticle. We represent a 
member a~(x) of p~, equation (1), by marking with a pencil on the page all 
those small regions representing preparticles belonging to a~(x). For the 
sake of simplicity let us assume that each a state of p~ is a set to which 
only one preparticle belongs. Therefore, only one pencil mark on the page 
of our example will correspond to each a state of p~. A set pi fulfilling this 
condition is for instance 

Pi = {ai(xl), . . .  , ai(x,)} 

where ai(xl) = {a,}, ai(x2) = {al, az} , . . . ,  ai(x,) = {a,, a 2 , . . . ,  a,}. Note 
that pi is an evolving particle since 

ai (x , )c  ai(xz)c . . .  = ai(x,) 
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Furthermore the ~ states of  Pi are given by [see equation (2)] s i ( x l ) =  
ai(Xl) = { o i l } ,  Si(X2) = ai(x2)  -- a i ( x , )  = {a2}, �9 �9 �9 , s i ( x , )  = a i ( x , )  -- a i ( x , )  u 

�9 " u a i ( x , _ O = { a , } .  The set ~(pi)  of  a states of  p~ is the completely 
ordered set (s~(xl) ,  s g ( x 2 ) , . . . ,  s~(x,)) .  Assume that these states a r e  dis- 
tributed in our graphic representation along a continuous curve from a 
point a to a point b and they are ordered in the same way as the members  
of  the set Y~(p~). In such a case the members ai(x)s  ofp i  will appear  in the 
page as all the initials determined on the curve ab by the successive pencil 
marks in the curves (the initial in ab determined by the pencil mark s of 
ab is the set of  all the pencil marks of  ab that precede s). Note that, as 
expected, all these initials can be ordered by the relation c .  Briefly, the a 
states of  Pi are graphically represented by the pencil marks giving rise to 
the curve ab, and the members ofp~ are represented by the initials determined 
in ab by such pencil marks. We can endow the curve ab with an arrowhead 
to represent graphically the ordering of both the members and a states of  
p~. I f  the particle under consideration is represented by a partly ordered set 
pj, we can always express pj as the union of sets p), p 2 , . . . ,  p~, each of 
them being completely ordered in the same way as the set pg above. Such 
subsets p~ , . . .  , p~'j of pj are called branches of  pj. These branches may be 
such that they can be represented in our example above as continuous 
curves, each endowed with an arrowhead. In this case the nonevolving 
particle p~ will appear  in our graphic representation either as a ramified 
graph, each branch endowed with an arrowhead, or a collection of curves, 
crossing or not to each other. 

Note that the continuous curves with arrowheads representing evolving 
particles, or the more complicated ramified graph with continuous branches 
of  our pictorial representation above, only serve to give a graphic and easily 
interpretable representation of orderings which, on the other hand, are 
completely determined by the way in which the members of  the sets rep- 
resenting particles are included in each other [see equations (1) and (2)]. 
The pencil marks standing for the a states in our graphic representation of 
particles could appear  sparsely on the page, yet the ordering of these marks 
could be still determined by looking at the set representing the particle 
under consideration. In this connection, note that permuting the positions 
of  the small page regions in our example above we get different pages, all 
of  them being equally legitimate for the graphic representation of  particles. 
Still the same collection of particles would appear  differently in each of 
these pages. 

The richness with which we can specify orderings for members  of  sets 
by using the relation c cannot be attained by ordering rules based on the 
proximity criterion of the positions of points on a page. However, we use 
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such pictorial representations because they allow clear and intuitive graphic 
representations of physical systems. 

We represent physical systems in our model as sets of sets representing 
particles (Garcfa-Sucre, 1975). Let Sc be a physical system with all its 
particles appearing on the page of our example as continuous curves, each 
one endowed with an arrowhead, and crossing to each other frequently. 
The structure of Sc is characterized by the way in which the a states of  the 
particles belonging to Sc are ordered, and also by the crossings occurring 
between these particles. In more precise terms, we define a point of crossing 

i of Sc as an ordered pair (si(x); lqx (So)), where si(x) is an a state of a 
particle p; ~ S~ and II~ (So) is the set of all the particles belonging to Sc 
having a states which yield a nonempty intersection with si(x)(Garcfa- 
Sucre, 1978a). We call si(x) and [I~ (So) the center and the ]1 set of the 
point of crossing (si(x); I~x (So)). The set of all the points of crossing of 
So, which we denote as Y. Y~ (Sc), characterizes the structure of So. In our 
representation above the physical system S~ will appear as network and the 
points of crossing of Sc as the knots of this network. 

We will say that two points of crossing (s;(x); 11~ (S)) and (sJ(y); 
l-[~y (S)) have the same structure, or are similar to each other (Garcfa-Sucre, 
1979), when there exist two pages of the kind discussed above such that 
the representations in these two pages of these two points of  crossing are 
identical. We will denote - as the similarity relation between points of 
crossing. 

We have given in a previous paper arguments in favor of representing 
the field produced by a physical system S as the quotient set Y. ~ ( S ) / ~ ,  
each point of the field being represented as a member of Y'. ~ ( S ) / ~ ,  i.e., 
as an equivalent class of points of crossing with respect to the relation 
of a similar structure (Garcla-Sucre, 1978a, 1979). The main features of this 
choice are the following (Garcla-Sucre, 1978a, 1979): 

(i) Every point of the field is completely characterized with respect 
to the remaining points of the same field since from the definition of 
quotient set it follows that the members of  ~ ~ ( S ) /~  all have different 
structures. 

(ii) A topology can be ascribed to the field produced by any physical 
system. In this sense, a field can be visualized as a collection of points 
(equivalence classes) which are connected by particles. In more precise 
terms, given two points x, x' ~ ~, Y~ (S ) /~  we say that they are connected 
by a particle p if there exist two points of crossing ~r c x and cr'c x' such 
that p crosses over the centers of both o- and o-'. The way in which the 
points of a field are connected to each other will determine the topology 
of the field. 
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(iii) A clear definition can be given of detector physical systems which 
make room to the property o f  particles according to which they may appear  
sometimes as localized objects, and some other times as extended physical 
entities (Garcfa-Sucre, 1979, Section 3). 

(iv) Space-time is defined in our model as a global field produced by 
a collection of physical systems S~, $2 . . . .  , S,. I f  this collection is such that 
the physical system S =-S~ w $2 u �9 �9 �9 w S, has an extremely large number  
of  particles, then the corresponding space-time S T = ~  Y, ( S ) / ~  can be 
expected to have a very large number of  points, each pair of  these points 
being connected by a large number of  particles of  S. Precisely, it is this 
richness in the connections between points that allows the definition of very 
many reference frames inside the space-time ST. In fact, a reference frame 
is obtained in our model when we select a subset of points of ST and a 
subset of  connections between these points (Garcfa-Sucre, 1978a, 1978bi 
1979). 

Since in previous papers we have given a description for photons 
compatible with the invariance of the velocity of  light (Garcfa-Sucre, 1978b, 
1979) and with the "particlelike" and "wavelike" properties that particles 
may manifest on different physical situations (Garcfa-Sucre, 1979), we have 
tried to answer in the present paper  the question whether the quantum 
statistics can be properly described in the f ramework of the same model. 

3. REFERENCE FRAMES AND THE STATE OF A SYSTEM 

The trajectory Tip of a particle p in the space-time ST(S) is defined as 
the set of  all those points of  ST over which the particle p passes; these 
points being ordered according to the ordering of the ~ states of  p in the 
set ~ (p).  More precisely, we say that a particle p passes over the point x 
of  ST when there exists at least one point of  crossing (s~(x); ]]~ (S) )~x  
such that at least one ~ state s of p fulfills s c~ s~(x) ~ 6. Equivalently we 
say that the a state s of  p intersects the point x of  ST. The ordering of the 
points of  T~ is induced by the ordering of the corresponding a states of  p. 
For instance, if each ~ state of p intersects only one point of  ST, and p is 
an evolving particle, then the trajectory T~ will be a completely ordered set. 

Making use of  the concept of  trajectory of a particle in a given space- 
time, we will arrive to define reference frames and then to ascribe unam- 
biguously space and time coordinates to the points of a region of a space-time 
with respect to a given reference frame. Our definition of a reference frame 
RsT in a space-time ST(S) = ~ ~ ( S ) / ~  consists in specifying, firstly, which 
points of  ST are covered by RsT, and secondly, which particles of  S are 
selected in order that the points of Rsv are connected in a so simple and 
coordinated way that space and time coordinates can be ascribed to the 
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points of  RST in an unambiguous and simple way. For instance, we can 
have reference frames covering the same points of  ST, but differing in the 
way in which those points are connected. A case in which this occurs is 
when the considered reference frames cover completely ST. In the above 
sense, we can consider a reference frame defined in a space-time to be 
inside this space-time. 

More precisely, we define a reference frame RST a s  a triad (ROT;  ~'; 

e), where R~ ST, and r and e are sets of  particles selected out of  S so 
that the conditions discussed below are fulfilled (Garc/a-Sucre, 1979). 

Any set ~- must fulfill that the trajectories Tp, p c r, are completely 
ordered sets, all having the same number  of  points, without crossing each 
other, and any point of  R~ appears in only one of such trajectories. 

We use the set ~" of  a reference frame RST = (R~ r;  e) to ascribe a 
time coordinate to every point of  R~ Given that every Tp is a completely 
ordered set we can choose a point x E Tp as an origin and then to ascribe 
time coordinates to all the remaining points of Tp by counting how many 
points are found between the point y e Tp under consideration and the 
origin x. We assign the time coordinate zero to the origin x. The time 
coordinate of  a point y ~ Tp such that y > x (x precedes y) is given by the 
number  of  points of  Tr which are found between x and y plus one. I f  y < x, 
then we consider the negative of  the number  of  points between x and y 
minus one. Let us assume that the point x c Tp which we have chosen as 
origin is the nth member  of  Tip. We can proceed in the same way as above 
for all remaining trajectories Tp with p ~ ~-. In particular, we chose as the 
origin in each of them its nth member.  By doing so, we have arrived to 
ascribe a time coordinate to every point covered by RsT and we have 
established similarity mappings between the trajectories Tp with p ~ % such 
that points having the same time coordinate are in correspondence with 
each other. The vertical lines in Figure 1, together with the circles over 
which they pass, stand for trajectories Tp, p ~ r, associated to the reference 
frame represented in this figure. 

T 0, 

Fig" 1" A reference frame RST=(R~ "r; e)" Circles I i N  x stand for points of  the space-time ST = }~ ~ (S)/~. The 
slanted arrow and the circles crossed over by this arrow 
stand for the trajectory o f p ' ~  e. Each vertical arrow and 
the circles over which it passes represent an evolving 
particle belonging to ,r. The time and space separation 
between the starred points are 4 and 5 units, respectively. 
The order of  immediate connection of any trajectory 
belonging to ~" is either 2 or 1. The space and time axes 
associated to this reference was frame cross over the / , 
point (3 arbitrarily chosen as the origin. r!~ t t YP9 
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On the other hand, the set e of the reference frame RST = (ROw; ~-; e) 
serves to the assignment of the space coordinates to every point of RST. To 
the set e belongs particles of S whose trajectories in ST are completely 
ordered sets. Furthermore, a particle belonging to e intersects a particle 
belonging to ~" in only one point or does not intersect it at all. The particles 
of ~- can be ordered according to the ordering of the points of the trajectories 
of the particles belonging to e in the following way. Given a particle p'  ~ e 
such that it intersects the particles Pi and pj of ~- at the points x and y, 
respectively, then Pi precedes pj if x precedes y in the trajectory Tp,. If in 
such an ordering of the particles belonging to ~" the particle pi is either the 
immediate successor or the immediate antecedent of pj we say that the 
trajectories Tp, and Tpj are immediately connected by the trajectory Tp,. We 
denote u;(Tp) as the number of all the trajectories of particles belonging 
to ~- which are immediately connected to Tp by trajectories of particles 
belonging to e. For instance, the reference frame RST = (R~ ~'; e) represen- 
ted in Figure 1 is such that only one particle belongs to e, namely, p'. 
Furthermore, the function u~ can only take the values 1 or 2 in the domain 
of trajectories 7"9 of particles belonging to r. More generally, in addition 
to the properties of the particles belonging to e which we have announced 
above, those particles must fulfill the following properties. Let ~Z(p,) be the 
subset of ~" whose particles are intersected by a particle p' ~ e. Then, once 
the trajectories Tp with p c  7(p') have been ordered by a particle p ' c  e 
according to the rule given above, this ordering remains unaltered when 
any other particle belonging to e is considered. Also we must have 
Up,~'l'(p ) = ' r  and that u,(Tp) is equal to either 2n or 2 n - 1 ,  where n is 
an integer, for any p ~ ~" (Garcia-Sucre, 1979). 

The space separation between two points x ~ Tp, and y ~ Tp~ in the 
reference frame RST = (ROT; ~'; e), where Pi, Pj ~ ~', is given by one plus the 
number of trajectories Tps, with p 6 ~', which are found in RST between Tz, , 
and Tp; In the example illustrated in Figure 1 the space separation between 
the two starred points is equal to five vertical trajectories. In the same way, 
the time separation between these two points is equal to four horizontal 
rows of points. Note that these horizontal rows are constructed according 
to the mapping between points having the same time coordinate which we 
have described above. 

The values that u~(Tp) takes for different trajectories Tps, with p E T, 
are related to the spatial dimensionality of the reference frame RST under 
consideration (Garcia-Sucre, 1979). We have stated above that the function 
u~ must be equal to either 2n or 2 n -  l in the domain of trajectories Tp 
with p ~ - ,  entering in the reference frame RST=(R~ ~'; e). If all the 
trajectories Tp, p ~ - ,  are such that v~(T f )=2n ,  we say that RST is n- 
dimensional without boundaries. On the other hand, if the function u~ takes 
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the value 2n for some trajectories Tps, with p e T, and 2n - 1 for some other 
trajectories Tp, we say that RST is n-dimensional with an (n - 1 )-dimensional 
boundary. For instance, the reference frame represented in Figure 1 is such 
that v; is either equal to 2 or 1. Therefore, this reference frame is 1- 
dimensional with a 0-dimensional boundary.  In fact, once we choose a 
point, say, 0, as origin in the reference frame appearing in Figure 1, there 
exists only one spatial axis passing over that point. Also there is only one 
time axis passing through the point 0, namely, the vertical oriented line 
crossing 0 in Figure 1. Brief, the space-time diagram associated with the 
reference frame appearing in Figure 1 has one spatial and one t ime-bounded 
axis. It can be easily seen that if for every trajectory Tp with p e ~- the 
function v; were always equal to 2, then the spatial axis in Figure 1 
would be unbounded and the time axis could be either bounded or 
unbounded.  

In order to have an intuitive representation of a reference frame 
Rsv = (R~ ~'; e) for which u;(Tp) is equal to either 4 or 3, we can imagine 
several figures of  the same kind as Figure 1 and distribute them in parallel 
plans connected by particles belonging to e. These particles will induce an 
ordering for such plans in the same way as the particle p '  induces an ordering 
for the trajectories Tps in Figure 1. In such a reference frame one could 
define two spatial axes and one time axis crossing over a point of ST 
arbitrarily chosen as origin in Rsv. 

Recall that a preparticle ai enters in a point x c ST if ai belongs to the 
union of the centers of  the points of crossing belonging to x. In other words, 
all those points of  ST in which preparticles belonging to the ce states of  p 
enter, belong to the trajectory Tp. Note that the same preparticle ai may 
enter in several points of  ST. This is so because the only condition for a 
point of  crossing tr to belong to a point x ~ ST is that or have the same 
structure as any other o-'c x, and the centers of  point of  crossing having 
different structures may yield nonempty intersections. Therefore, the condi- 
tion according to which the trajectories Tp with p ~ ~" and Tp. with p '  c e 
are all completely ordered sets, and that we have required in our definition 
of reference frame, is a very restrictive one. Yet, if we want to relax this 
restriction we can substitute in our definition of reference frame above the 
points of  trajectories Tp by clusters of  point of  ST, each of such clusters 
being formed by all the points of  ST in which enter preparticles of  a given 
a state of  a particle p ~ ~-. Since each cluster corresponds in this way to an 
a state, it follows that if all the particles belonging to ~- are evolving particles, 
then these particles will induce orderings for the clusters in the same way 
as they induced orderings for the points of  ST, as mentioned before. For 
reference frames in which many space-time points enter in each of such 
clusters we consider these clusters as if they were points. 
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Given a particle p, the trajectory of this particle in the reference frame 
RsT will be the set Tp c~ R~ ordered according to the time coordinates in 
Rs.c (Garcfa-Sucre, 1978b). We denote this set as T(p; Rsx). This definition 
corresponds well to the way in which we proceed in practice when we 
observe the track of a particle in a given reference frame. In such observa- 
tions one considers that those sectors of the particle track corresponding 
to smaller time coordinates, precede in the trajectory those sectors corre- 
sponding to larger time coordinates being ascribed according to the time 
axis of the reference frame where the particle is being observed. 

As a last point of this section we will introduce the concept of state of 
a particle in a given space-time. We will need this concept in the next section 
where we analyze the quantum statistics in the framework of our model of 
space-time. 

One property usually required to be fulfilled by the concept of state 
of a physical entity is that by specifying the state of a physical entity we 
give the maximum possible information about this physical entity. On the 
other hand, one crucial assumption of our model is that the points of 
space-time can be distinguished from each other because they have different 
structures (Garcfa-Sucre, 1978b, 1979, 1981). Then, we adopt the point of 
view that the most detailed physical information that can be given about a 
particle in a space-time is the list of points of crossing in which this particle 
enters, specifying the structure of each of these points of crossing. Let us 
denote s(p; ST) the state s of a particle p in the space-time ST. Therefore, 
we define s(p; ST) as the set of points of crossing belonging to the points 
of ST in which the particle p enters. 

The above definition of state has the property that once the state of a 
particle p in a space-time ST is given then the trajectory of this particle p 
is specified in each reference frame defined inside the space-time ST. 

Recall, in this sense, that our definition of trajectory recover the 
particular case of a classical trajectory, reducing to it when corresponding 
to well-defined velocities and positions (Garcfa-Sucre, 1979, Section 3). 
Also, by given s(p; ST) we are specifying the way in which the particle p 
partially determines the space-time ST, which in our formalism can be seen 
as a global field (Garcfa-Sucre, 1979, Sections 1 and 2). 

4. QUANTUM STATISTICS 

In our model a space-time is completely characterized by its field points 
and the way these points are connected to each other. The trajectories of 
all the particles that we have considered until now have to do with field 
points, and the intersections of the a states of these particles with the centers 
of points of  crossing entering in these field points. We will consider that 
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all these particles [i.e., those defined by equation (1)] belong to one kind 
of particle. Arguments will be given below to represent bosons in our model 
by particles of  this kind. 

On the other hand, we assume that fermions can also be represented 
in our model by a second kind of particles whose nature is related to the 
way the field points of ST are connected to each other. We represent a 
particle of  this kind as a cut or discontinuity in ST. Such cuts in the 
space-time ST are characterized by the topology of  ST (Garcfa-Sucre, 1979). 
Such particles will appear in different Rsxs reference frames as the corre- 
sponding cut of ST appears in these reference frames. Recall in this concern 
that a reference frame Rs-r is specified by a subset of points of ST and a 
subset of connections between these points. 

We have the following properties for the particles of  the first kind, i.e., 
those represented by sets of sets of preparticles: 

(i) Given a particle p and the space-time ST, the state s(p; ST) o f p  
in ST uniquely determines the trajectory T(p; Rsx) of p in each reference 
frame Rs-r. To see this let us start from the set s (p ;  ST) of points of crossing 
belonging to the points of  ST in which the particle p enters. The specification 
of s(p; ST) determines the points of ST for which there are a states of  p 
that have a nonempty intersection with the center of one or several points 
of crossing entering in these points of ST. Therefore, s(p; ST) determines 
the trajectory T(p; RsT) in any Rsx. 

(ii) An arbitrary number of particles of the first kind can be found in 
the same state. 

Two particles, p and p', have the same state in ST if s(p; ST) = s(p'; 
ST). This will occur when these two sets have the same elements, i.e., for 
any given point of  crossing in which p enters, p'  also enters and vice versa. 
There is no restriction in our model in the number of particles, except that 
the number of  preparticles is finite, though very large (Garcia-Sucre, 1979). 
In our model, the total number of particles of the first kind is even larger, 
since if N is the total number of  preparticles, then N N is the total number 
of such particles, according to equation (1). Then, for a sufficiently large 
space-time ST it can occur that there exists a large number of particles of  
the first kind, all entering in the same points of crossing. All these particles 
will have the same state in ST. 

(iii) Systems of particles of the first kind follows the Bose-Einstein 
statistics (B.E.). 

According to the property (i) above, only one state corresponds to a 
particle of  the first kind in ST. This state, s(p ; ST), corresponds in turn to 
only one trajectory, T(p; Rsv), in each reference frame RsT defined in ST. 
Whatever the method we use to ascribe energy values to trajectories, we 
assume that we are dealing with particles for which one can ascribe an 
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energy value to each trajectory in each reference frame. In a previous paper  
we have shown that defining inertial reference frames as those for which 
the number  of  preparticles entering in each of its field points is the same, 
we can ascribe energy values to trajectories corresponding to well-defined 
velocities (Garcia-Sucre, 1979, Section 3). We have also shown that these 
energy values are compatible with the relation E =hoJ between energy 
and angular frequencies. Let us then assume that we are ascribing energy 
values to trajectories according to the method described in this previous 
work. 

For a system of particles of the first kind S = {p~, P2, �9 �9 � 9  PN} we have 
that for each particle Pi ~ S there is only one state s(p~; ST) and only one 
trajectory T(pi, Rsv) in each reference frame RsT. This implies that in our 
model, given a reference frame the same particle cannot be found in different 
states, and this immediately leads to the partition function 

Z = ~ exp[- /3(nl  el + n : 2 + "  �9 "+ nlel)] (3) 
h i ,  n 2 ,  . . . , n l  

where n: is the number  of  particles of  S in the state j, ej is the energy 
corresponding to this state j in the considered reference frame, and ~J= 1 n: = 
N, where N is the total number  of  particles entering in the system S. In 
equation (3) we are assuming that each state j is stationary and thus to it 
corresponds only one energy value ej. 

Note in equation (3) that in front of  each term of the sum the factor 
N !/n~ !n2! �9 �9 nz ! does not appear;  this factor would  take into account the 
possible ways in which particles "can be put"  into given single-particle 
states j = 1,/. The inclusion of these factors in equation (3) leads, as it is 
well known, t o t h e  Maxwell-Boltzmann statistics (MB). Finally, it is well 
known that the partition function in equation (3) and the restriction ~J=~ nj = 
N lead to the B.E. distribution (see, e.g., Reif, 1963). 

Let us now consider the case of the second kind of particles. These 
particles are represented in our model by cuts or discontinuities in ST. 
Following the same point of  view as at the end of Section 3, the state s(p;  
ST) of a particle p of  this kind in the space-time ST will be specified by 
the set of  points of  crossing entering in the points of  ST which are found 
at the boundary  of the considered cut in ST. Let us denote T ( p ;  Rsv) as the 
trajectory of p in RsT: the set of  points at the boundary  of the cut ordered 
according to the time coordinates in Rsv. The above definition of the state 
of  a particle of  the second kind in a given space-time, leads immediately 
to the property according to which no more than one particle p of  the 
second kind can be found in a state s(p;  ST). To see this, let us assume 
that two different particles, p and p' ,  are in the same state, in a given ST, 
i.e., s(p;  ST)=  s(p';  ST). This implies that the set of  points of  crossing 
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specifying the state of p and p'  in ST is the same. Then the points of ST 
which are found at the boundary of the cuts in ST representing p and p', 
respectively, are also the same. But this set of  points of ST characterizes 
completely one cut in ST since it specifies the region of Rsv where the cut 
is found (recall that every point of ST has a different structure from any 
other point of  ST), as well as the topological properties of this cut, since 
having the points of crossing we also have the way in which the points of 
ST are connected to each other. Therefore, p and p'  are represented by the 
same cut in ST and thus, according to our definition of a particle of the 
second kind, p = p'. 

On the other hand, given p, ST, and Rsa-, the trajectory T(p; Rs-r) is 
uniquely determined. Therefore, the partition function for a system of  
particles of the second kind will be that given in equation (3) with the 
restrictions that no more than one particle can occupy a given state and 
that Y.J=~ nj = N. It is well known that equation (3) and these two restrictions 
lead to the Fermi-Dirac distribution (F.D.). 

In the framework of our model the basic difference between M.B. and 
both B.E. and F.D. statistics consists in that what is a particle in M.B. 
statistics corresponds in fact to a collection of particles in B.E. and F.D. 
Let us examine this question by giving an example. Consider a system of  
macroscopic bodies M~, M 2 , . . . ,  Mr. Classically, each of these bodies can 
occupy different states. The way in which one of these bodies, say, Mi, can 
change of state between states of different energy is by interacting with 
other bodies. If we disregard action-at-a-distance forces, we know that the 
interaction between particles and thus also between macroscopic bodies, is 
mediated by the exchange of particles. Therefore, when we Say that the 
macroscopic body M; can occupy the states 1 , . . . ,  n corresponding to 
different energies, we are in fact saying that different collections of  particles, 
each considered as a unity, occupy different states. Classically, we identify 
all these collections of  particles with only one system of particles, the body 
M~, and describe the situation by saying that M~ changes, passing in this 
way by different states. If we consistently identify in such a way the 
macroscopic bodies and we count them accordingly, as well as the states 
they can occupy, then the M.B. statistics will be the correct statistics to 
describe systems of  such bodies, as it is in fact. This corresponds to include 
a factor N!/n~ !n2!... n~! for each term of the sum in equation (3). 

On the other hand, if we describe a physical system in a detailed way, 
i.e., at the microscopic level, we have three options: 

(i) A microscopic particle can occupy different states, behaving in this 
respect as a macroscopic body. 

(ii) Microscopic particles fulfill option (i) plus the indistinguishability 
postulate. 
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(iii) A microscopic particle cannot occupy different states in a given 
reference frame. There is a one-to-one correspondence between microscopic 
particles and single-particle states. 

Option (i) is excluded by the experimental results. Option (ii) plus the 
postulate of the symmetric or antisymmetric character of the wave functions 
is in agreement with the experimental results. In option (ii) the indistin- 
guishability of particles compensates exactly the number of states in excess 
introduced by the hypothesis that a microscopic particle can occupy different 
states. In other words, while this last hypothesis leads to the introduction 
of factors N !/n~ ! n 2 ! . . .  nl IS in equation (3), the indistinguishability postu- 
late removes them again. 

Option (iii), suggested by our model, is also in agreement with experi- 
mental evidence, yet simpler than option (ii), since it does not include any 
postulate about the indistinguishability of particles. 

5. CONCLUDING REMARKS 

In spite of the fact that our model does not describe quantum statistics 
in a detailed way, since no correlate of the spin is given in the present 
paper, it describes general traits of particles which seem to be sufficient in 
the framework of our model to obtain the correct quantum distributions 
for the two kinds of particles that we have postulated here. The difference 
between these two kinds of particles suggests that a possible correlate in 
our model for the spin could be the connectivity of the space-time where 
the particle under consideration is described. This possibility will be studied 
elsewhere. 

REFERENCES 

Basri, S. A. (1966). A Deductive Theory of Space and" Time. North-Holland, Amsterdam. 
Bunge, M., and Garcfa-M~iynez, A. (1976). Inter. J. Theor. Phys., 15, 961. 
Borneas, M. (1976). Inter. J. Theor. Phys., 15, 773. 
Borneas, M. (1980). Analele Universitatii Timisoara, 18, 57. 
Borneas, M. (1981). Model of a Space-Time Theory (preprint, Universitatea dim Timisoara, 

U.T.F.T. 10/81). 
Feynman, R. P. (1982). Inter..1. Theor. Phys., 21,467. 
Finkelstein D. (1969). Phys. Rev., 184, 1261. 
Finkelstein D. (1972a). Phys. Rev. D 5, 320. 
Finkelstein D. (1972b). Phys. Rev. D 5, 2922. 
Finkelstein D. (1974). Phys. Rev. D 9, 2219. 
Finkelstein D., Frye, G. and Susskind, L. (1974). Phys. Rev. D 9, 2231. 
Finkelstein D. (1982). Inter..1. Theor. Phys., 21, 489. 
Fraenkel, A. A. (1961). Abstract Set Theory. North-Holland, Amsterdam. 
Fraenkel, A. A., and  Bar-Hillel, Y. (1958). Foundations of Set Theory. North-Holland, 

Amsterdam. 



Quantum Statistics in a Simple Model of Space-Time 455 

Garcfa-Sucre, M. (1975). Inter. J. Theor. Phys., 12, 25. 
Garcfa-Sucre, M. (1978a). Inter. J. Theor. Phys., 17, 163. 
Garcfa-Sucre, M. (1978b). Proceedings of the First Section of the Interdisciplinary Seminars of 

Tachyons, Monopoles and Related Topics, E. Recami, ed., pp. 235-246. North-Holland, 
Amsterdam. 

Garcfa-Sucre, M. (1979). Inter. J. Theor. Phys., 18, 725. 
Garcia-Sucre, M. (1981). Scientific Philosophy Today, J. Agassi and R. S. Cohen, eds., pp. 

45-69. Reidel, Dordrecht. 
Penrose, R. (1967). J. Math. Phys., 8, 345. 
Penrose, R. (1968). Inter. J. Theor. Phys., 1, 61. 
Penrose, R. ( 1971 ). Angular momentum: An approach to combinatorial space-time, in Quantum 

Theory and Beyond, T. Bastin, ed., pp. 151-180. Cambridge University Press, Cambridge. 
Penrose, R. (1975). In Quantum Gravity, C. J. Isham, R. Penrose, and D. W. Sciama, eds., 

pp. 268-407. Clarendon Press, Oxford. 
Reif, F. (1965). Fundamentals of Statistical and Thermal Physics, Chapter 9. McGraw-Hill, 

New York. 
Sachs, M. (1972). Inter. J. Theor. Phys., 5, 161. 
Sachs, M. (1980). Found. Phys., 10, 921. 
Sachs, M. (1981). Found. Phys., 11, 329. 


